
ronments: sandy submarine sediments, venting water, and
material from black smokers from the East Pacific Rise
(N 9°, W 104°; depth 2500 m), Guaymas Basin (between
N 20°49′, W 109°06′ and N 27°01′, W 111°24′; depth
2000 m), and Vulcano Island, Italy (depth up to 15 m)
and muds, sediments, and spring waters from continental
solfataric areas at Yellowstone National Park, USA
(Obsidian Pool), Kamchatka Peninsula, Russia (Uzon
Caldera, Makinski, Puchino), Atacama Desert, Chile
(Thermas de Jurasi, Thermas de Pollequere, Puchuldiza
Geyser area, Tatio volcanic area), and Lihir Island, Papua
New Guinea (original temperatures 70 to 98 °C). From
5 g of original material, 50 to 100 ng of DNA were ex-
tracted as described previously [1], with modifications
[11]. 10 ng of purified DNA was used as a template for
PCR using a standard protocol [3] and primers 7mcF,
518mcF, 1116mcR, and 1511mcR (Table 1). In addition,
the archaeal specific primer combination 8aF-1512uR
was used as a positive control. By applying our “Nanoar-
chaeota”-specific primers for amplification, we obtained
PCR products from one marine sample from the East Pa-
cific Rise, designated LPC33 (black smoker fragment),
and two continental samples: Obsidian Pool, Yellowstone
National Park, USA, designated OP9 (temperature 80 °C;
pH 6.0) and the Uzon Caldera, Kamchatka, Russia, des-
ignated CU1 (temperature 85 °C; pH 5.5). The amplified
16S rDNA fragments were purified (QIAquick PCR Pu-
rification Kit), cloned into pDrive (QIAGEN, Hilden,
Germany) and transformed into competent E. coli cells.
30 clones were randomly chosen for plasmid preparation
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Summary

We screened samples from high temperature biotopes for 16S rRNA genes of the novel archaeal phylum
“Nanoarchaeota”. Positive PCR amplifications were obtained from Yellowstone National Park, Uzon
Caldera, and an abyssal vent system. These sequences form a cluster with the sequence of “Nanoar-
chaeum equitans”, indicating a wide distribution of this phylum. 
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Recently a novel phylum of Archaea was discovered,
the “Nanoarchaeota” [7], which is currently represented
by a single species, “Nanoarchaeum equitans”. It was ob-
tained from hot rocks taken at the Kolbeinsey Ridge,
north of Iceland. This hydrothermal system is located at
the shallow sub polar Mid-Atlantic Ridge at a depth of
106 m [5]. “N. equitans” is a nano-sized hyperther-
mophilic symbiont that grows attached to the surface of a
new Ignicoccus species [7]. It has a cell diameter of only
400 nm and grows under strictly anaerobic conditions at
temperatures between 75 and 98 °C. Molecular investiga-
tions revealed that “N. equitans” harbours a highly di-
vergent 16S rDNA sequence which exhibits several base
exchanges even in previously “universal” sequence signa-
tures (primer sequences). As a consequence, representa-
tives of the “Nanoarchaeota” previously remained unde-
tectable by commonly used PCR-based ecological studies
[1] and nothing is known on their phylogenetic diversity
or their distribution in nature. 

Here we report the first ecological studies using
“Nanoarchaeota”-specific primers to amplify 16S rDNA
from environmental DNAs from a wide variety of high
temperature biotopes. 

Occurrence of “Nanoarchaeota” 16S rDNA
sequences in environmental samples

We isolated DNA from more than 30 marine and con-
tinental samples from neutral pH high temperature envi-
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Table 1. Primer sequences used in PCR amplifications and sequencing.

Primer Target site Sequence 5′ → 3′ Applied for Reference

7mcF 7–23 CTC CCG TTG ATC CTG CG All “Nanoarchaeota” This study
8aF 8–23 TCY GGT TGA TCC TGC C Archaea (as control) [3]
344aF 344–363 CGG GGY GCA SCA GGC GCG AA Clone OP9, clone CU1

(two mismatches) [3]
518mcF 518–536 GCA GCC GCC GCG GGA ACA C “N. equitans”, clone LPC33 This study
1116mcR 1100–1116 GCG GGT CTC GCC TGT TT “N. equitans”, clone LPC33 This study
1119aR 1101–1119 GGY RSG GGT CTC GCT CGT T Clone OP9, clone CU1

(one mismatch) [2]
1511mcR 1490–1511 CGG CTA CCT TGT GTC GAC TTA G All “Nanoarchaeota” This study
1512uR 1493–1513 ACG GHT ACC TTG TTA CGA CTT Archaea (as control) [3]

Table 2. Sequence similarities between the “Nanoarchaeota” sequences and representatives of major phylogenetic groups.

“Nanoarchaeota” Cren- Eury- “Kor- Bacteria
archaeota archaeota archaeota”

“Nanoarchaeota” “N. equitans”/ Clone Clone
Clone LPC33 OP9 CU1

“N. equitans”/ – 82.7 83.2 80–71 80–67 75–72 70–60
Clone LPC33
Clone OP9 82.7 – 92.7
Clone CU1 83.2 92.7 –

Crenarchaeota 80–71 – 84–69 82–75 73–62
Euryarchaeota 80–67 84–69 – 80–70 74–60
“Korarchaeota” 75–72 82–75 80–70 – 72–64
Bacteria 70–60 73–62 74–60 72–64 –

Table 3. Comparison of standard 16S rDNA primers with the corresponding sequences of the “Nanoarchaeota”.

Primer (Reference) 8aF [3] 344 aF [3]

Sequence TCY GGT TGA TCC TGC C CGG GGY GCA SCA GGC GCG AA
“N. equitans” / LPC33 TCC CGT TGA TCC TGC G CGG GGC GCA CCA GGG GCG AA
Clone OP9 / CU1 n.d. CGG GAT GCA CCA GGG GCG AA

Primer (Reference) 519uF [3] 934aR [13]

Sequence CAG CMG CCG CGG TAA TAC GTG CYC CCC CGC CAA TTC CT
“N. equitans” / LPC33 CAG CCG CCG CGG GAA CAC GTG CTC CCC CGC CTA TTC CT
Clone OP9 / CU1 CAG TCG CCA CGG GAA TAC GTG CCC CCC CGC CTA TTC CT

Primer (Reference) 1044 aF [2] 1119aR [2]

Sequence GAG AGG WGG TGC ATG GCC G GGY RSG GGT CTC GCT CGT T
“N. equitans” / LPC33 GAG AGG AGG TGC ATG GCC G GGC GCG GGT CTC GCC TGT T
Clone OP9 / CU1 GAG AGG AGG TGC ATG GCT G GGT GCG GGT CGC GCT CGT T

Primer (Reference) 1406uR [3] 1512uR [3]

Sequence ACG GGC GGT GTG TRC AA ACG GHT ACC TTG TTA CGA CTT
“N. equitans” / LPC33 ACG GGC GGT GAG TGC AA ACG GCT ACC TTG TGT CGA CTT
Clone OP9 / CU1 ACG GGC GGT GAG AGC AA n.d.

Base exchanges in “N. equitans” are boxed; in the sequences of clones OP9 and CU1 they are written in bold. Base exchanges shared
among all “Nanoarchaota” are highlighted. 
n. d. = not determined.



(Table 3). However, in most of these primer regions OP9
and CU1 differed from “N. equitans” (Table 3). Never-
theless, primers 7mcF and 1511mcR yielded specific PCR
products from the environmental DNAs and seem to be
specific for “Nanoarchaeota”, although no final state-
ments on this can be made at present. The occurrence of
sequence heterogeneity in conserved regions permits the
possibility that there is a much wider “nanoarchaeotal”
diversity still to be detected and might explain why we
never obtained more than one sequence from each envi-
ronmental sample. 

The presence of “Nanoarchaeota” 16S rDNA se-
quences in hydrothermal biotopes in the deep sea
(LPC33), in shallow marine areas (“N. equitans”) and in
solfataric fields (OP9, CU1) located on different conti-
nents indicates a wide distribution of members of the
“Nanoarchaeota”. Since FISH experiments were unsuc-
cessful, it is unclear whether the new “Nanoarchaeota”
sequences represent small organisms similar to “N. equi-
tans”. Also, a symbiotic lifestyle cannot be deduced from
the current information, particularly for the clones OP9
and CU1, which came from continental hydrothermal
habitats that are not known biotopes for Ignicoccus [6].
Therefore, a better understanding of the morphological,
physiological, and molecular diversity of this group
awaits the cultivation and study of the corresponding or-
ganisms.
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